Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems
نویسندگان
چکیده
منابع مشابه
Structure preserving model reduction of port-Hamiltonian systems
It is shown that by use of the Kalman-decomposition an uncontrollable and/or unobservable port-Hamiltonian system is reduced to a controllable/observable system that inherits a port-Hamiltonian structure. Energy and co-energy variable representations for port-Hamiltonian systems are discussed and the reduction procedures are used for both representations. For a general portHamiltonian system in...
متن کاملEffort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems
Port-based network modeling of (lumped-parameter) physical systems leads directly to their representation as port-Hamiltonian systems which are an important class of passive state-space systems. At the same time modeling of physical systems often leads to high-dimensional dy namical models. State-space dimensions are enormously high as well if distributed-parameter models are spatially discreti...
متن کاملStructure-preserving tangential interpolation for model reduction of port-Hamiltonian systems
Port-Hamiltonian systems result from port-based network modeling of physical systems and are an important example of passive state-space systems. In this paper, we develop the framework for model reduction of large-scale multi-input/multioutput port-Hamiltonian systems via tangential rational interpolation. The resulting reduced-order model not only is a rational tangential interpolant but also...
متن کاملStructure Preserving Model Reduction of Parametric Hamiltonian Systems
While reduced-order models (ROMs) are popular for approximately solving large 4 systems of differential equations, the stability of reduced models over long-time integration remains 5 an open question. We present a greedy approach for ROM generation of parametric Hamiltonian 6 systems which captures the symplectic structure of Hamiltonian systems to ensure stability of the 7 reduced model. Thro...
متن کاملStructure-preserving Model Reduction of Forced Hamiltonian Systems
This paper reports a development in the proper symplectic decomposition (PSD) for model reduction of forced Hamiltonian systems. As an analogy to the proper orthogonal decomposition (POD), PSD is designed to build a symplectic subspace to fit empirical data. Our aim is two-fold. First, to achieve computational savings for large-scale Hamiltonian systems with external forces. Second, to simultan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2016
ISSN: 1064-8275,1095-7197
DOI: 10.1137/15m1055085